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Abstract

Nonlinear dynamics of a hinged–hinged pipe conveying pulsatile fluid subjected to combination and principal

parametric resonance in the presence of internal resonance is investigated. The system has geometric cubic nonlinearity due

to stretching effect out of immovable support conditions at both ends. The pipe conveys fluid at a velocity with a

harmonically varying component over a constant mean velocity. For appropriate choice of system parameters, the natural

frequency of the second mode is approximately three times that of the first mode for a range of mean flow velocity,

activating a three-to-one internal resonance. The analysis is carried out using the method of multiple scales by directly

attacking the governing nonlinear integro-partial-differential equations and the associated boundary conditions. The set of

first-order ordinary differential equations governing the modulation of amplitude and phase is analyzed numerically for

combination parametric resonance and principal parametric resonance. Stability, bifurcation and response behavior of the

pipe are investigated. The amplitude and frequency detuning of the harmonic velocity perturbation are taken as the control

parameters. The system exhibits response in the directly excited and indirectly excited modes due to modal interaction.

Dynamic response of the system is presented in the form of phase plane trajectories, Poincare maps and time histories.

A wide array of dynamical behavior is observed illustrating the influence of internal resonance.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

There are a number of practical applications involving fluid–structure interactions, notable among which
are the pipes conveying fluid. Pipes with internal fluid-flow are found in many engineering installations,
particularly in the power-generating, chemical and petrochemical industries in the form of process piping, heat
exchanger tube bundles, hydraulic oil tubes and lubrication pipes. These structures are subjected to flow-
induced vibration due to turbulence in the flow or due to resonance with some periodicity in the flow, which
may itself arise by fluid–structure interaction. At sufficiently high flow velocities, these are subjected to self-
excited fluidelastic instabilities like divergence and flutter. These flow-induced instabilities, in addition to being
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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of practical concern, are of immense fundamental interest in illustrating the phenomenon of structural stability
and the underlying mechanisms.

The subject of pipes conveying fluid has been studied extensively over a long period of time. Due to a
number of factors like parametric excitation in the form of flow fluctuation, external excitations, support
conditions, articulated or continuous nature of pipe, additional system configurations like lumped mass,
attached nozzles, elastic foundations, elastic constraints and different forms of nonlinearities in the system
arising from various sources, the system exhibits a wide array of dynamical behavior. The linear and nonlinear
dynamics of pipes conveying fluid has thus been a subject of widespread research over the last four decades.
Paidoussis et al. [1–3] provided detailed review and extensive bibliography on this diverse and interesting flow-
induced vibrations and instabilities of pipings and cylindrical structures, projecting the subject as a model
dynamical problem. These reviews discussed various aspects like mathematical modeling, solution
methodology, effect of system parameters like boundary conditions, fluid pipe mass ratio, gravity effect,
parametric instabilities of the system due to pulsatile flow, fluid friction effects, the mechanisms of instabilities,
destabilizing effects of dissipation, effects of elastic constraints, motion limiting constraints, lumped mass,
attached nozzles, elastic foundation and various other parameters on the dynamics of the system.

When the flow velocity has a harmonically fluctuating component over a mean value, the pipe experiences
parametric instabilities depending on the amplitude and frequency of flow fluctuation. Detailed investigations
based on linearized analytical models of these parametric instability problems for simply supported pipes were
done by Chen [4], Paidoussis and Issid [5], Paidoussis and Sundararajan [6], Ginsberg [7] and Ariaratnam and
Namachchivaya [8]. They studied the parametric and combination resonances and evaluated instability
regions using numerical methods, viz., Bolotin’s method and numerical Floquet analysis. Various other
authors considered nonlinear pipes conveying pulsating fluid, notably due to Namachchivaya [9],
Namachchivaya and Tien [10], Jayaraman and Narayanan [11], Chang and Chen [12] and Yoshizawa et al.
[13]. Some other notable contributions in the nonlinear dynamics of pipes conveying fluid at steady flow-
velocity are by Thurman and Mote [14], Holmes [15], Holmes and Marsden [16], Rousselet and Hermann [17],
Bajaj et al. [18] and Bajaj and Sethna [19,20].

The problem of pipes conveying fluid belongs to the broader class of problems involving axially moving
continua, as in other applications like traveling beam and analysis carried out in similar lines. Analysis of such
problems involving linear and nonlinear models exist in the literature. Some papers concern systems with
constant velocity and others deal with time-dependent velocity. Transverse vibrations of tensioned pipes
conveying fluid with time-dependent velocity and with vanishing flexural stiffness was studied by Oz and
Boyaci [21]. Solution of the integro-differential equation of motion was obtained by direct application of the
perturbation technique (MMS) in contrast to the discretization perturbation technique. Calculation of natural
frequency for this system of traveling continua was done by complex analysis taking fluid velocity and the
fluid-pipe mass ratio as parameters and stability charts for principal parametric resonances presented. Oz [22]
extended the work considering nonlinear effects due to stretching of the neutral axis but using similar
approach as previous. Stability and bifurcation analysis for both trivial and nontrivial state was carried out
and frequency response plots presented. Oz et al. [23] considered another problem belonging to this broader
class of axially moving continua, viz. nonlinear traveling beam with pulsating speed through direct
perturbation (MMS) technique and carried out a stability analysis. The direct perturbation technique has been
used considering its advantage over the discretization perturbation method [24–26]. Modal interactions in
multi-degree-of-freedom systems or continuous systems are dealt in Refs. [27–30]. Due to commensurable
relationships of the frequencies of the system for specific values of the system parameters, internal resonance
occurs influencing the system behavior under external or parametric excitation through energy exchange
among the interacting modes.

From the review of literature, it is found that the study of internal resonance in the area of flow induced
vibration in pipes conveying fluid has not yet been explored so far. The nonlinear modal interaction or the internal
resonance in the system arising out of commensurable relationships of frequencies, in presence of parametric
excitation due to pulsatile flow can have possible influence on system behavior, which needs to be studied.

In the present paper, we analyze the nonlinear planar vibration of a hinged–hinged pipe conveying fluid
with harmonic flow velocity pulsation in the presence of internal resonance. Geometric cubic nonlinear terms
are included in the equation of motion due to midline stretching of the pipe.
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The linear natural frequencies of the system are dependent on the mean flow velocity besides other system
parameters and for a particular range of the flow velocity, the natural frequency of the second mode is
approximately three times that of the first providing the condition for 3:1 internal resonance. It is worth noting
that in a conventional hinged–hinged beam involving classical normal modes, although there are
commensurable linear natural frequencies, there are no internal resonances because of the vanishing of the
coupling coefficients leading to internal resonance and consequently only directly excited modes are present
[31]. In contrast, in this study it is demonstrated that for the pipes conveying fluid with similar boundary
conditions, the modal coupling coefficients do not vanish and internal resonance exists. Hence internal
resonance, in conjunction with parametric resonances in the system due to the parametric excitation related to
flow pulsation is considered.

Principal parametric resonance of second mode and combination parametric resonance of sum type are
considered here. Principal parametric resonance of first mode which also simultaneously activates a
combination parametric resonance of difference type in presence of 3:1 internal resonance is not considered
here due to lack of space and is studied in another paper.

Adopting the direct perturbation MMS technique, the partial differential equation of motion of the pipe is
reduced to sets of first-order nonlinear modulation equations in terms of the complex modes of the pipe. These
modulation equations are numerically analyzed for stability and bifurcations of trivial and nontrivial
solutions. Bifurcation diagrams representing system responses with variation of parameters like amplitude and
frequency of flow pulsation, frequency detuning of internal resonances and damping are computed with the
help of a continuation algorithm [32]. The trivial state stability plots are presented. The modulation equations
are also numerically integrated to obtain the dynamic solutions viz periodic, quasiperiodic and chaotic
responses for typical system parameters.

For the principal parametric resonance of second mode, the influence of internal resonance is illustrated in
the form of two mode solutions in the frequency and amplitude responses, which coexist with the trivial and
single-mode solutions. The system is shown to have pitchfork bifurcations, Hopf bifurcations and saddle node
bifurcations for different parameter values. The influence of intensity of flow pulsation and frequency
detuning for internal resonance on the strength of nonlinear modal interaction are illustrated. The system
is shown to exhibit dynamic solutions like periodic and quasiperiodic responses for typical range of para-
meter values.

For the combination parametric resonance, the system is shown to have two mode solution coexisting with
the trivial state. The system exhibits saddle node and Hopf bifurcations and dynamic solutions like periodic,
quasiperiodic and chaotic responses with variation of parameters. The chaos is shown to occur through
quasiperiodic route. The phase planes, time spectra, power spectra and Poincare sections are presented, which
are illustrative of the dynamic behavior.
2. Formulation of the problem

We consider a uniform horizontal pipe hinged at both ends conveying fluid with a flow-velocity having a
harmonically pulsating component superimposed over a steady one (Fig. 1). It is assumed that the motion is
planar and the uniform cross-section remains plane during the motion and the tube behaves like an
Euler–Bernoulli beam in transverse vibration. The fluid is assumed to be incompressible and has plug flow
conditions. The equation of transverse motion of the pipe including the nonlinearity due to midline stretching
y 

U 

x 

Fig. 1. Schematics of the hinged–hinged pipe.
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is given by Paidoussis [1]:
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with the associated boundary conditions

yð0; tÞ ¼ yðL; tÞ ¼
q2y
qx2
ð0; tÞ ¼

q2y

qx2
ðL; tÞ ¼ 0, (2)

where x is the longitudinal coordinate, y represents the transverse deflection, U is the fluid velocity, T̄ is the
externally imposed axial tension, m and M are respectively the mass per unit length of pipe and fluid materials,
A is the cross sectional area of the pipe, L is the length, EI is the flexural stiffness of the pipe material, E* is the
coefficient of internal dissipation of the pipe material which is assumed to be viscoelastic and of the
Kelvin–Voigt type and c is the external damping factor. Assuming the harmonic flow fluctuation of the form

U ¼ U0ð1þ n sin otÞ, (3)

where U0 is the mean flow velocity and n and o are the amplitude and frequency of the flow–velocity
fluctuation. This fluctuating flow velocity appears as parametric excitation term in the equation of motion
leading to parametric instabilities.

Incorporating the following dimensionless quantities
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the equation of motion can be nondimensionalized as
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u ¼ u0ð1þ n sin OtÞ, (6)

The primes and dots represent differentiation with respect to nondimensional longitudinal coordinate x and
nondimensional time t. To express the smallness of the amplitude of motion w, we scale it with the factor e1/2,
where the small parameter e is a measure of amplitude and is also used as a book keeping device in the
subsequent perturbation analysis. Introducing this scaling factor and using Eq. (6) for pulsating flow velocity,
the nondimensional equation of motion becomes
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w00 þ

ffiffiffi
b

p
�u1O cos Otð1� xÞw00

þ2
ffiffiffi
b

p
ðu0 þ �u1 sin OtÞ _w0 þ 2�m _wþ 2�a _w0000 þ €w

¼ �k

Z 1

0

w0
2
dxw00 þOð�2Þ, ð7Þ

with the boundary conditions

wð0; tÞ ¼ 0; wð1; tÞ ¼ 0; w00ð0; tÞ ¼ 0; w00ð1; tÞ ¼ 0, (8)
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where

m ¼ sn=2�; a ¼ an=2�; u0n ¼ �u1. (9)

As Eq. (7) contains cubic nonlinearity, it does not lend itself to closed-form solution. One can find the
approximate solution using the perturbation techniques or some other numerical techniques.

3. Method of analysis

The present system of hinged–hinged pipe is analyzed in the form of a first-order uniform expansion
through the MMS applied directly to the partial differential Eq. (7) and the associated boundary conditions
(8). The direct perturbation technique has been used considering its advantage over the discretization-
perturbation technique [24–26,30]. Though the direct perturbation method and the discretization-perturbation
method, both for linear and nonlinear systems, yield identical results for infinite modes, the former gives better
results for finite mode truncation if a higher order perturbation scheme were used. For lower order
perturbation schemes, as adopted in the present case, both methods yield identical results. But the choice of
orthogonal basis functions for the discretization-perturbation equation might not be so straightforward for
some involved cases and a transformation of equation to a convenient form for orthogonalizing the modes
may be needed. In such a case, employing the direct perturbation method would be more straightforward,
even though the algebra might be more involved.

We seek an approximate solution to this weakly nonlinear distributed parameter system in the form of a
first-order uniform expansion and introduce the time scale Tn ¼ ent, n ¼ 0,1,2,y. The time derivatives are

d

dt
¼ D0 þ �D1 þ . . . ;

d2

dt2
¼ D2

0 þ 2�D0D1 þ . . . ;Dn ¼ q=qTn; n ¼ 0; 1; 2; . . . . (10)

We write the expansion of w(x,t) in the form

wðx; tÞ ¼ w1ðT0;T1; xÞ þ �w2ðT0;T1; xÞ þ � � � (11)

Substituting Eqs. (10) and (11) into Eqs. (7) and (8) and equating coefficients of like powers of e on both sides,
we obtain
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The solution of Eq. (12) can be expressed as

w0ðT0;T1; xÞ ¼
X1
m¼1

fmðxÞAmðT1Þ e
iomT0 þ cc, (14)

where fm(x) are the mode shapes, om are the natural frequencies and cc stands for complex conjugate.
The mode shapes fm(x) for the specified hinged–hinged boundary conditions are calculated as

fmðxÞ ¼ C1m eib1mx �
b24m � b21m

� �
eib3m � eib1m
� �

b24m � b22m

� �
eib3m � eib2mð Þ

(
eib2mx �

b24m � b21m

� �
eib2m � eib1m
� �

b24m � b23m

� �
eib2m � eib3mð Þ

eib3mx

þ �1þ
b24m � b21m

� �
eib3m � eib1m
� �

b24m � b22m

� �
eib3m � eib2mð Þ

þ
b24m � b21m

� �
eib2m � eib1m
� �

b24m � b23m

� �
eib2m � eib3mð Þ

" #
eib4mx

)
, ð15Þ



ARTICLE IN PRESS
L.N. Panda, R.C. Kar / Journal of Sound and Vibration 309 (2008) 375–406380
where bim are the eigenvalues which satisfy the relation
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b
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and the characteristic equation
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The linear natural frequencies of the pipe conveying fluid vary with the mean flow-velocity for different
modes for variation of parameters like flexural stiffness, fluid-pipe mass ratio and axial tension. For
specific combinations of system parameters, the lower natural frequencies can be commensurable, leading
to internal resonance in the system and nonlinear interaction between the associated modes. We analyze
the specific case of two mode interaction corresponding to particular system parameters. A three-to-one
internal resonance o2E3o1 is considered for a range of mean flow velocity u0 and it is assumed that there
is no other commensurable frequency relationship with higher modes. We analyze the cases of principal
parametric and combination parametric resonances involving the first two modes, for subcritical flow
velocities. Since none of these first two modes is in internal resonance with any other mode of the tube, all
other modes except the directly or indirectly excited first or second mode decay with time due to the presence
of damping and the first two modes will contribute to the long term system response [30,31]. Hence we can
replace Eq. (14) by

w0ðT0;T1; xÞ ¼ A1ðT1Þf1ðxÞe
io1T0 þ A2ðT1Þf2ðxÞe

io2T0 þ cc, (18)

Next we consider the cases of principal parametric resonance of second mode and combination parametric
resonance of sum type. The difference type combination resonance OEo2–o1 in presence of 3:1 internal
resonance (o2E3o1) is simultaneously activated when we consider principal parametric resonance of first
mode (OE2o1) in conjunction with 3:1 internal resonance (o2E3o1), which is studied in another paper.
3.1. Principal parametric resonance

We consider the principal parametric resonance of second mode and describe the nearness of o2 to 3o1 and
O to 2o2 using the detuning parameters s1 and s2. For this, we write the frequency relations for the internal
resonance and principal parametric resonance of second mode as

o2 ¼ 3o1 þ �s1 and O ¼ 2o2 þ �s2, (19)

Substituting Eqs. (18) and (19) into Eq. (13), we get

D2
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ffiffiffi
b

p
u0D0w

0
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2
0 � GÞw001 þ w00001

¼ G1e
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i o2T0þs2T1ð Þ

þ G5e
io2T0 þ G6e

i o2T0�s1T1ð Þ þ ccþNST ð20Þ

where the terms Gn are defined in Appendix. NST stands for terms that do not produce secular or small divisor
terms. As the homogeneous part of Eq. (20) with its associated boundary conditions has a nontrivial solution,
the corresponding nonhomogeneous problem has a solution only if a solvability condition is satisfied [26]. This
requires the right-hand side of Eq. (20) to be orthogonal to every solution of the adjoint homogeneous
problem, which leads to the complex variable modulation equations for the amplitude and phase

2A01 þ 2mC1A1 þ 2 ae1A1 þ 8S1A
2
1Ā1 þ 8S2A1A2Ā2 þ 8G1Ā

2

1A2e
is1T1 ¼ 0, (21)

2A02 þ 2mC2A2 þ 2ae2A2 þ 8S4A
2
2Ā2 þ 8S3A1A2Ā1 þ 8G2A3

1e
�is1T1 þ 2H6Ā2e

is2T1 ¼ 0, (22)
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where prime denotes differentiation with respect to the slow time T1 and Si, Hi, Gi , Ci and ei are defined in
Appendix. Overbar indicates complex conjugate. The terms in the above equations involving the internal
frequency detuning parameter s1 are the contributions of internal resonance in the system.
3.2. Combination parametric resonance

We write the frequency relations for the internal resonance and combination parametric resonance
(sum type) as

o2 ¼ 3o1 þ �s1 and O ¼ o1 þ o2 þ �s2, (23)

where s1 and s2 are the detuning parameters.
Substituting Eqs. (18) and (23) into Eq. (13), we get

D2
0w1 þ 2

ffiffiffi
b

p
u0D0w01 þ ðu

2
0 � GÞw001 þ w00001

¼ G1e
io1T0 þ G2e

i o1T0þs1T1ð Þ þ G8e
i o1T0þs2T1ð Þ

þ G5e
io2T0 þ G6e

i o2T0�s1T1ð Þ þ G3e
i o2T0þs2T1ð Þ þ ccþNST , ð24Þ

where the terms Gn are defined in Appendix. Following similar arguments as in Section 3.1, Eq. (24) leads to
the modulation equations.

2A01 þ 2mC1A1 þ 2 ae1A1 þ 8S1A
2
1Ā1 þ 8S2A1A2Ā2 þ 8G1Ā

2

1A2e
is1T1 þ 2H4Ā2e

is2T1 ¼ 0, (25)

2A02 þ 2mC2A2 þ 2 ae2A2 þ 8S4A2
2Ā2 þ 8S3A1A2Ā1 þ 8G2A

3
1e
�is1T1 þ 2H5Ā1e

is2T1 ¼ 0. (26)

The internal resonance in the system are illustrated by the terms in the above equations involving the internal
frequency detuning parameter s1.
4. Stability and bifurcations

4.1. Principal parametric resonance

From the above complex valued modulation equations, the evolution of equilibrium solutions, their
stability and bifurcation analysis are carried out for the two cases. For this we introduce the polar
transformation for the complex amplitude An

An ¼
1

2
an e

ibn , (27)

where an and bn are the real valued amplitude and phase. Substituting Eq. (27) into Eqs. (21) and (22) for the
case of principal parametric resonance and separating real and imaginary parts, we get the reduced equations
for the modulation of amplitude and phase

a01 ¼ �mC1Ra1 � ae1Ra1 � S1Ra3
1 � S2Ra1a

2
2 � G1Ra2

1a2 cos g1 þ G1I a2
1a2 sin g1, (28)

a02 ¼ � mC2Ra2 � ae2Ra2 � S4Ra3
2 � S3Ra2

1a2 � G2Ra3
1 cos g1 � G2I a3

1 sin g1
�H6Ra2 cos g2 þH6I a2 sin g2, ð29Þ

g01 ¼ s1 þ 3 mC1I þ 3 ae1I þ 3S1I a2
1 þ 3S2I a2

2 þ 3G1Ra1a2 sin g1 þ 3G1I a1a2 cos g1

� mC2I � ae2I � S4I a2
2 � S3I a2

1 þ G2R

a3
1

a2
sin g1 � G2I

a3
1

a2
cos g1

�H6R sin g2 �H6I cos g2, ð30Þ
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g02 ¼ s2 þ 2mC2I þ 2 ae2I þ 2S3I a2
1 þ 2S4I a2

2 � 2G2R

a3
1

a2
sin g1

þ 2G2I

a3
1

a2
cos g1 þ 2H6R sin g2 þ 2H6I cos g2, ð31Þ

where g1 ¼ b2�3b1+s1T1 and g2 ¼ s2T1�2b2.
The stability of the nontrivial state can be obtained by perturbing these polar modulation equations and

checking the eigenvalues of the resulting Jacobian matrix.
To determine the stability of the nontrivial state, these equations are perturbed to obtain

Da01;Da02;Dg
0
1;Dg

0
2

 �T
¼ Jc½ � Da1;Da2;Dg1;Dg2

 �T
, (32)

where T denotes transpose and [Jc] is the Jacobian matrix whose eigenvalues determine the stability and
bifurcations of the system. Though, for the non-trivial state, one can obtain the stability by this method, it is
not possible for the trivial state, as the perturbed equation will not contain the perturbations Dg01 and Dg02 due
to the presence of the coupled terms a1g01 and a2g02 in the reduced Eqs. (28)–(31). To circumvent this difficulty,
an alternative Cartesian formulation is utilized. Accordingly, the complex amplitude An is expressed as

An ¼
1

2
pnðT1Þ � iqnðT1Þ
	 


eilnðT1Þ, (33)

Substituting into Eqs. (21) and (22), using the notations in the Appendix, carrying out algebraic manipulations
and separating real and imaginary parts, we arrive at the normalized reduced equations or the Cartesian form

of modulation equations

p01 ¼ � mC1Rp1 � mC1I q1 � ae1Rp1 � ae1I q1 � S1Rðp
3
1 þ p1q2

1Þ � S1I ðp
2
1q1 þ q3

1Þ

� S2Rðp1p2
2 þ p1q

2
2Þ � S2I ðq1p

2
2 þ q1q2

2Þ � W1q1

� G1Rðp
2
1p2 � p2q2

1 þ 2 p1q1q2Þ þ G1I ð2 p1q1p2 � p2
1q2 þ q2

1q2Þ, ð34Þ

q01 ¼ � mC1Rq1 þ mC1I p1 � ae1Rq1 þ ae1I p1 þ S1I ðp
3
1 þ p1q

2
1Þ � S1Rðp

2
1q1 þ q3

1Þ

� S2Rðq1p2
2 þ q1q

2
2Þ þ S2I ðp1p

2
2 þ p1q2

2Þ þ W1p1

þ G1Rð2 p1q1p2 � p2
1q2 þ q2

1q2Þ þ G1I ðp
2
1p2 � p2q

2
1 þ 2 p1q1q2Þ, ð35Þ

p02 ¼ � mC2Rp2 � mC2I q2 � ae2Rp2 � ae2I q2 � S4Rðp
3
2 þ p2q2

2Þ � S4I ðq
3
2 þ p2

2q2Þ

� S3Rðp
2
1p2 þ p2q

2
1Þ � S3I ðp

2
1q2 þ q2

1q2Þ � W2q2 �H6Rp2 þH6I q2

� G2Rðp
3
1 � 3 p1q

2
1Þ þ G2I ðq

3
1 � 3 p2

1q1Þ, ð36Þ

q02 ¼ � mC2Rq2 þ mC2I p2 � ae2Rq2 þ ae2I p2 � S4Rðq
3
2 þ p2

2q2Þ þ S4I ðp
3
2 þ p2q2

2Þ

� S3Rðp
2
1q2 þ q2

1q2Þ þ S3I ðp
2
1p2 þ p2q2

1Þ þ W2p2 þH6Rq2 þH6I p2

þ G2Rðq
3
1 � 3 p2

1q1Þ þ G2I ðp
3
1 � 3 p1q

2
1Þ, ð37Þ

where

W1 ¼ ð2s1 þ s2Þ=6; W2 ¼ s2=2. (38)

4.2. Combination parametric resonance

Following similar lines as in the previous case, we use the polar transformation for the complex amplitude
An and arrive at the reduced equations for the modulation of amplitude and phase,

a01 ¼ � mC1Ra1 � ae1Ra1 � S1Ra3
1 � S2Ra1a

2
2 � G1Ra2

1a2 cos g1 þ G1I a2
1a2 sin g1

�H4Ra2 cos ðg2 � g1Þ þH4I a2 sin ðg2 � g1Þ, ð39Þ
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a02 ¼ � mC2Ra2 � ae2Ra2 � S4Ra3
2 � S3Ra2

1a2 � G2Ra3
1 cos g1 � G2I a3

1 sin g1
�H5Ra1 cos ðg2 � g1Þ þH5I a1 sin ðg2 � g1Þ, ð40Þ

g01 ¼ s1 þ 3 mC1I þ 3 ae1I þ 3S1I a2
1 þ 3S2I a2

2 þ 3G1Ra1a2 sin g1 þ 3G1I a1a2 cos g1

� mC2I � ae2I � S4I a2
2 � S3I a2

1 þ G2R
a3
1

a2
sin g1 � G2I

a3
1

a2
cos g1

þ 3H4R

a2

a1
sin ðg2 � g1Þ þ 3H4I

a2

a1
cos ðg2 � g1Þ

�H5R

a1

a2
sin ðg2 � g1Þ �H5R

a1

a2
sin ðg2 � g1Þ, ð41Þ

g02 ¼ s1 þ s2 þ 4mC1I þ 4 ae1I þ 4S1I a2
1 þ 4S2I a2

2 þ 4H4R

a2

a1
sin ðg2 � g1Þ

þ 4H4I

a2

a1
cos ðg2 � g1Þ þ 4G1Ra1a2 sin g1 þ 4G1I a1a2 cos g1, ð42Þ

where g1 ¼ b2�3b1+s1T1 and g2 ¼ (s1+s2)T1�4b1. The prime indicates the differentiation with respect to
the slow time T1. SiR;SiI ;HiR;HiI ;GiR;GiI ;CiR;CiI ; eiI ; eiR are the real and imaginary parts of the nonlinear
interaction coefficients shown in the Appendix.

Due to the difficulty encountered for the stability analysis of the trivial state as indicated earlier, Cartesian
formulation of the modulation equation is utilized instead, which leads to the normalized reduced equations

p01 ¼ � mC1Rp1 � mC1I q1 � ae1Rp1 � ae1I q1 � S1Rðp
3
1 þ p1q2

1Þ � S1I ðp
2
1q1 þ q3

1Þ

� S2Rðp1p
2
2 þ p1q2

2Þ � S2I ðq1p
2
2 þ q1q

2
2Þ � W1q1 �H4Rp2 þH4I q2

� G1Rðp
2
1p2 � p2q2

1 þ 2 p1q1q2Þ þ G1I ð2 p1q1p2 � p2
1q2 þ q2

1q2Þ, ð43Þ

q01 ¼ � mC1Rq1 þ mC1I p1 � ae1Rq1 þ ae1I p1 þ S1I ðp
3
1 þ p1q

2
1Þ � S1Rðp

2
1q1 þ q3

1Þ

� S2Rðq1p
2
2 þ q1q2

2Þ þ S2I ðp1p
2
2 þ p1q

2
2Þ þ W1p1 þH4Rq2

þH4I p2 þ G1Rð2 p1q1p2 � p2
1q2 þ q2

1q2Þ þ G1I ðp
2
1p2 � p2q

2
1 þ 2 p1q1q2Þ, ð44Þ

p02 ¼ � mC2Rp2 � mC2I q2 � ae2Rp2 � ae2I q2 � S4Rðp
3
2 þ p2q2

2Þ � S4I ðq
3
2 þ p2

2q2Þ

� S3Rðp
2
1p2 þ p2q2

1Þ � S3I ðp
2
1q2 þ q2

1q2Þ � W2q2 �H5Rp1 þH5I q1

� G2Rðp
3
1 � 3p1q

2
1Þ þ G2I ðq

3
1 � 3p2

1q1Þ, ð45Þ

q02 ¼ � mC2Rq2 þ mC2I p2 � ae2Rq2 þ ae2I p2 � S4Rðq
3
2 þ p2

2q2Þ þ S4I ðp
3
2 þ p2q2

2Þ

� S3Rðp
2
1q2 þ q2

1q2Þ þ S3I ðp
2
1p2 þ p2q

2
1Þ þ W2p2 þH6Rq2 þH6I p2

þ G2Rðq
3
1 � 3p2

1q1Þ þ G2I ðp
3
1 � 3p1q

2
1Þ, ð46Þ

where

W1 ¼ ðs1 þ s2Þ=4; W2 ¼ ð3s2 � s1Þ=4. (47)

For evaluating stability, the above equations are perturbed leading to

Dp01;Dq01;Dp02;Dq02
 �T

¼ Jc½ � Dp1;Dq1;Dp2;Dq2

 �T
. (48)

The eigenvalues of the Jacobian matrix [Jc] determine the stability and bifurcation of the system. The stability
boundary for the trivial state is determined from the eigenvalues of the Jacobian matrix [Jc] by setting
p1 ¼ q1 ¼ p2 ¼ q2 ¼ 0.
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5. Results and discussion

From the numerical computations it is found that the natural frequencies for different modes of the
hinged–hinged pipe conveying fluid vary with the mean flow- velocity for specific values of other system
parameters like fluid-pipe mass ratio, initial tension, dimensions and flexural stiffness of the pipe. The
velocities corresponding to zero frequencies are the critical velocity of divergence or buckling. The natural
frequencies for different modes are evaluated as functions of the fluid velocity u0 corresponding to specific
values of different system parameters. Taking the fluid-pipe mass ratio, b ¼ 0.64 and initial tension parameter,
G ¼ 25, it is found that for the nondimensional mean flow velocity u0 ¼ 2.773, the natural frequency of the
second mode is approximately equal to three times that of the first mode (o2E3o1) indicating the presence of
3:1 internal resonance. For these values of parameters, no other commensurable frequency relationships are
observed, which obviates the possibility of nonlinear modal interaction among modes other than the first two.
We study two cases of parametric resonance viz. principal parametric resonance of second mode, (OE2o2)
and combination parametric resonance of sum type (OEo1+o2) in presence of 3:1 internal resonance in the
subcritical flow-velocity regime.

5.1. Principal parametric resonance

For the analysis of the pipe-fluid system subjected to principal parametric resonance of the second mode
(i.e., OE2o2) in presence of 3:1 internal resonance, system parameters are taken as mentioned earlier
corresponding to the commensurable natural frequencies of the first and second mode of the system and
k ¼ 9050 for the nonlinearity parameter. There are no modal interactions involving other modes. The specific
value of the flow velocity used for the study, considering internal frequency detuning, is u0 ¼ 3.0 for which
o1 ¼ 15.337 and o2 ¼ 46.945. The book-keeping parameter e is taken as 0.01. The corresponding internal
detuning parameter s1 ¼ 93.4.

The trivial state stability boundary is shown in Fig. 2, plotted in terms of parametric frequency detuning s2
for the chosen parameter values and for different values of the damping. The region inside the boundary
denotes instability. In the absence of internal resonance, the present problem reduces to that of
Namachchivaya [9]. Corresponding to typical values of system parameters used in Ref. [9] for a horizontal
pipe without initial tension, viz u0 ¼ 1.88, b ¼ 0.64, a* ¼ 0.005, G ¼ 0, o01 ¼ 9.87 (the dimensionless natural
frequency in the first mode at zero flow velocity), o1 ¼ 7.71, o2 ¼ 38.55 and OE2o2 (principal parametric
resonance), the results for the stability boundaries are found to be in good agreement.
Fig. 2. Trivial state stability boundary for different values of damping parameter. Values of the nondimensional damping parameter a
indicated on the curves.
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5.1.1. Stability and bifurcations of equilibrium solutions

The nonlinear steady-state response along with their stability and bifurcations are obtained by utilizing the
reduced equations or normalized reduced equations representing the modulations in the system response.
Frequency and amplitude response curves are found to be symmetrical about the s2 and u1 axes respectively
and hence only the positive sides of the response curves are presented here. The normal continuous lines in the
figure represent stable equilibrium solutions, the bold lines the unstable foci and the dotted lines the saddle.

Typical frequency response curves for the first and second modes are shown in Fig. 3 for m ¼ 0.1, u1 ¼ 10
and s1 ¼ 93.4. The response curves in this case have trivial, single-mode and two-mode equilibrium solutions.
Two-mode equilibrium solutions are found for specific range of parameter values and are isolated from the
single-mode solutions. The single-mode solutions show a hardening-spring-type behavior. The nontrivial
single- mode response a2 has a stable branch and an unstable branch having supercritical and subcritical
pitchfork bifurcations from the trivial state at s2 ¼ �132.796 and s2 ¼ 131.39 respectively. The isolated two-
mode solutions are in the form of closed loops and have stable portion between the limit point SN2

(s2 ¼ 340.53) and the Hopf bifurcation point H1 (s2 ¼ 326.49). Fig. 4 shows the frequency response curve
Fig. 3. Frequency response curve for m ¼ 0.1, a ¼ 0, u1 ¼ 10 and s1 ¼ 93.4.



ARTICLE IN PRESS

Fig. 4. Frequency response curve for m ¼ 0.1, a ¼ 0, u1 ¼ 40 and s1 ¼ 93.4.
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corresponding to higher amplitude of flow-velocity-fluctuation for m ¼ 0.1, u1 ¼ 40 and s1 ¼ 93.4. It follows
that for higher magnitude of flow-pulsation, the range between the stable and unstable branches of the single-
mode solution widens and the loops of the two-mode solution broaden indicating increase in the strength of
the nonlinear modal interaction.

The effect of internal frequency detuning parameter (s1) on the frequency response is shown in Figs. 5
and 6 for specific values of amplitude (u1 ¼ 10) of flow-pulsation. It follows that for lower values of s1, the
strength of the nonlinear interaction due to the three-to-one internal resonance weakens, the amplitudes
of both modes decrease, which is more pronounced for the indirectly excited first mode. For the
single-mode (second mode) response, the separation of the nontrivial stable and unstable curve decreases with
decreasing s1.

Fig. 7 shows typical amplitude-response curves for s1 ¼ 93.4 and s2 ¼ 330. As in the case of the frequency
response, the amplitude response also has single-mode and two-mode solutions besides the trivial solution.
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Fig. 5. Frequency response curves (first mode) for m ¼ 0.1, a ¼ 0, u1 ¼ 10 and (a) s1 ¼ 93.4, (b) s1 ¼ 18.43.
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With increase in the amplitude of flow-pulsation u1, the trivial state of the second mode loses stability at
u1 ¼ 23.9 through a subcritical pitchfork bifurcation resulting in a jump of the response to the stable
nontrivial branch which shows a monotonic increase with u1. The isolated two- mode solutions in the form of
closed loops exist in specific range of the flow-pulsation amplitude u1 and have stable portion between the limit
points SN1 (u1 ¼ 9.569) and the Hopf bifurcation point H1 (u1 ¼ 10.16).

If we do not consider the internal resonance and flexural rigidity in the system, the present problem reduces
to that of the pipe conveying fluid studied by Oz [22]. The frequency response curves for the case of principal
parametric resonance in both the studies (i.e., in Ref. [22] and the present one) are in qualitative agreement
displaying trivial and single mode nontrivial solutions along with pitchfork bifurcations. In a similar study of
the axially moving beam [23], which belongs to the broader class of traveling continua like pipes conveying
fluid and also in the study of pipes conveying fluid by Namachchivaya [9], this qualitative feature is also
displayed in absence of internal resonance. In contrast, the additional two mode solutions in the form of
closed loops for the frequency response curves and amplitude response curves are observed in the present
problem, which are the contributions of internal resonance.
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Fig. 6. Frequency response curve (second mode) for m ¼ 0.1, a ¼ 0, u1 ¼ 10 and (a) s1 ¼ 93.4, (b) s1 ¼ 18.43.
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5.1.2. Dynamic solutions

Some typical dynamic solutions are presented corresponding to the frequency response and amplitude
response plots. Taking initial conditions in the vicinity of the nontrivial single-mode equilibrium solutions
(Fig. 4), the system has periodic response in the second mode as shown in the form of phase portrait, FFT
power spectra and Poincare maps, typically at s2 ¼ 400.05, m ¼ 0.1, a ¼ 0 and u1 ¼ 40 (Fig. 8). The first mode
response attains trivial state. The system exhibits quasiperiodic behaviour in the second mode for another
value of the detuning parameter, i.e., at s2 ¼ 150.75, m ¼ 0.1, a ¼ 0 and u1 ¼ 40 as indicated in Fig. 9 in the
form of time history and Poincare maps. The first mode response goes to trivial state. The quasiperiodic nature
of the second mode is apparent from the beating effect of the time response and closed loop feature of the
Poincare map. Fig. 10 shows the trivial state in the first mode and quasiperiodic response in the second mode
corresponding to another point of the frequency response plot, viz. at s2 ¼ 700.05, m ¼ 0.1, a ¼ 0 and u1 ¼ 40.
In the stable portion of the closed loop frequency response curves, for typical detuning parameter s2 ¼ 1230.1,
m ¼ 0.1, a ¼ 0 and u1 ¼ 40, the two-mode system response is shown in Fig. 11. While the first mode jumps to
the trivial state, the second mode exhibits periodic behaviour. These sample dynamic solutions indicate
periodic, quasiperiodic and mixed mode response of the system for the chosen parameter values.
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Fig. 7. Amplitude response curves for m ¼ 0.1, a ¼ 0, s2 ¼ 330.
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5.2. Combination parametric resonance

For analysis of the pipe-fluid system subjected to combination parametric resonance of the additive type
(OEo1+o2) in presence of 3:1 internal resonance, the system parameters like mass ratio, tension parameter,
nonlinearity parameter and flow velocity are taken same as in the previous case, which corresponds to similar
natural frequencies and internal frequency detuning parameter as stated earlier. The trivial state stability
boundary is shown in Fig. 12, plotted in terms of parametric frequency detuning s2, for different values of the
damping parameter. In the absence of internal resonance, the present problem reduces to that of
Namachchivaya [10]. Corresponding to typical values of system parameters used in Ref. [10] for a horizontal
pipe without initial tension, viz u0 ¼ 1.88, b ¼ 0.64, a* ¼ 0.005, G ¼ 0, o01 ¼ 9.87 (the dimensionless natural
frequency in the first mode at zero flow velocity), o1 ¼ 7.71, o2 ¼ 38.55 and OEo1+o2 (combination
parametric resonance), the results for the stability boundaries are found to be in good agreement.
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Fig. 8. Phase portrait, FFT power spectra and Poincare map for s2 ¼ 400.05, m ¼ 0.1, a ¼ 0, u1 ¼ 40.

Fig. 9. Time history and Poincare map for s2 ¼ 150.75, m ¼ 0.1, a ¼ 0 and u1 ¼ 40.
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5.2.1. Stability and bifurcations of equilibrium solutions

As in the case of principal parametric resonance, the frequency and amplitude response curves for the first
and second modes are found to be symmetrical about the s2 and u1 axes respectively and hence only the
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Fig. 10. Time history and Poincare map for s2 ¼ 700.05, m ¼ 0.1, a ¼ 0 and u1 ¼ 40.

Fig. 11. Time history, FFT power spectra and phase portrait for s2 ¼ 1230.1, m ¼ 0.1, a ¼ 0 and u1 ¼ 40.
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positive sides of the response curves are presented here. Typical frequency response curves for the first and
second mode are shown in Fig. 13 for m ¼ 0.1, u1 ¼ 6 and s1 ¼ 93.4. The system exhibits isolated two-mode
nontrivial equilibrium solutions coexisting with the trivial solution. One of these isolated nontrivial solutions
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Fig. 12. Trivial state stability boundary for different values of damping parameter.

Fig. 13. Frequency response curves for m ¼ 0.1, a ¼ 0, u1 ¼ 6 and s1 ¼ 93.4.
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is in the form of a closed loop lying between two limit points at SN1 (s2 ¼ �49.1834) and SN2 (s2 ¼ 530.5504).
The upper branch has a Hopf bifurcation at H2 (s2 ¼ 212.4658), where one pair of complex conjugate
eigenvalues crosses the imaginary axis from the left-half of the complex plane to the right-half leading to
instability. The other isolated nontrivial portion of the equilibrium solution has a limit point at SN3

(s2 ¼ 92.156) where the response jumps to one of the two other branches of stable equilibrium solutions, one
trivial and another nontrivial solution of the closed loop, depending on the initial conditions. This isolated
nontrivial solution continues for higher values of the detuning parameter s2 as a pair of branches. With
increase in s2, the amplitude of first mode increases steadily along these nontrivial branches, while the second
mode amplitude decreases continuously. The upper nontrivial branch has a Hopf bifurcation at point H1

(s2 ¼ 146.416). The trivial state is stable throughout the range of detuning parameter s2 except in the zone
between the Hopf bifurcation points at s2 ¼ �25.562 and s2 ¼ 25.802. Fig. 14 shows frequency response
curves for higher value of amplitude of flow-pulsation typically for m ¼ 0.1, u1 ¼ 18 and s1 ¼ 93.4. With
increase in flow-pulsation, the range of the nontrivial closed loop diminishes and additional Hopf bifurcation
point appears.

Fig. 15 shows the variation of amplitude of response for the first and the second mode with the amplitude of
flow-pulsation u1, for m ¼ 0.1, a ¼ 0, s2 ¼ 120 and s1 ¼ 93.4. As in the case of the frequency response, the
amplitude response also has two portions of isolated nontrivial curves, one a closed loop and another
continuously varying with increasing detuning parameter. The closed-loop portion of the nontrivial state
Fig. 14. Frequency response curves for m ¼ 0.1, a ¼ 0, u1 ¼ 18 and s1 ¼ 93.4.
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Fig. 15. Amplitude response curves for m ¼ 0.1, a ¼ 0, s2 ¼ 120 and s1 ¼ 93.4.
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ranges between the limit points SN1 (s2 ¼ 2.465) and SN2 (s2 ¼ 15.305) and is unstable. In the second branch
of the nontrivial solution, one branch is stable and continuously increasing for both the modes for increasing
values of u1. This branch has a Hopf bifurcation point H1 (s2 ¼ 63.564). For lower values of u1, this stable
branch loses stability through a succession of saddle-node bifurcations leading to the unstable branches, which
has another Hopf bifurcation point at H2 (s2 ¼ 1.427). When the fluctuation amplitude u1 increases from a
low value, the stable equilibrium system response is either trivial or nontrivial depending on the initial
conditions. With increase in u1, amplitudes of both the modes increase monotonically.

5.2.2. Dynamic solutions

The frequency-response and amplitude-response plots show a number of bifurcations with variation of
control parameters u1 and s2 of flow-velocity-fluctuation. Dynamic behavior of the system in the form of
periodic, quasiperiodic and chaotic responses is investigated in the vicinity of the bifurcation points and some
sample results are presented. The response is dependent on the initial conditions. A variety of response
behavior is observed. Near the Hopf bifurcation point H2 in the unstable portion of the nontrivial closed loop
in the frequency response curve (Fig. 13) corresponding to detuning parameter s2 ¼ 215.58 and with m ¼ 0.1,
u1 ¼ 6 and s1 ¼ 93.4, the system response jumps to the trivial state as shown in the time history and Poincare
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Fig. 16. Time history and Poincare map for s2 ¼ 215.58, m ¼ 0.1, a ¼ 0, u1 ¼ 6 and s1 ¼ 93.4.

Fig. 17. Phase portrait, FFT power spectra and Poincare map for s2 ¼ 211.58, m ¼ 0.1, a ¼ 0, u1 ¼ 6 and s1 ¼ 93.4.
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map of Fig. 16. Corresponding to another nearby point on the same branch at s2 ¼ 211.58, the system has
periodic solutions as indicated in Fig. 17 in the form of phase portrait, FFT power spectra and Poincare map.
For another point on this branch, closer to the crossing of the other isolated nontrivial unstable branch at
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Fig. 18. Phase portrait, time history and power spectra for s2 ¼ 150.58, m ¼ 0.1, a ¼ 0, u1 ¼ 6 and s1 ¼ 93.4.

Fig. 19. Poincare map, time history and power spectra for s2 ¼ 190.58, m ¼ 0.1, a ¼ 0, u1 ¼ 6 and s1 ¼ 93.4.
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s2 ¼ 150.58, the system exhibits motion with mild chaotic modulation as depicted through phase portrait,
time history and FFT power spectra in Fig. 18. The Poincare map, time history and FFT power spectra
of Fig. 19 also correspond to chaotically modulated motion for another point s2 ¼ 190.58 on this branch.
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Fig. 20. Phase portrait, time history, Poincare map and power spectra for s2 ¼ 200.58, m ¼ 0.1, a ¼ 0, u1 ¼ 6 and s1 ¼ 93.4.
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For some range of the detuning parameters, the system exhibits a mix of quasiperiodic and transitional
behavior. For example, at s2 ¼ 200.58, the response is quasiperiodic as shown in Fig. 20. The torus form of
the phase portrait, the beating effect in the time history and the closed loop form of the Poincare map indicate
this quasiperiodic nature of response. The transitional behaviour in the form of torus breakdown is observed
for s2 ¼ 210.58, m ¼ 0.1, u1 ¼ 6 and s1 ¼ 93.4 (Fig. 21). The above results are for relatively lower value of
flow pulsation. For higher magnitude of pulsation, system also exhibits a wide array of dynamical behaviour.
Corresponding to the frequency response plot in Fig. 14, for m ¼ 0.1, u1 ¼ 18 and s1 ¼ 93.4 in the vicinity of
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Fig. 21. Phase portrait, time history, Poincare map and power spectra for s2 ¼ 210.58, m ¼ 0.1, a ¼ 0, u1 ¼ 6 and s1 ¼ 93.4.
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the Hopf bifurcation point H2 at s2 ¼ �81.488 in the stable portion of the branch, the system response is
shown in Fig. 22 through the phase portrait, time history and Poincare map. Torus form of the phase portrait,
beating phenomena in time history and closed loop character of the Poincare map indicate quasiperiodic
behaviopur. Fig. 23 shows the phase portrait and Poincare map for another nearby point in the same branch
at s2 ¼ �80.419. The response is also quasiperiodic in nature. For the portion of the branch corresponding to
unstable foci in the vicinity of H2, the response grows and jumps to the trivial attractor, about which the
system executes periodic motion. Fig. 24 characterizes this feature for s2 ¼ �90.419. A mix of quasiperiodic
and transitional behaviour is observed for points in the range between Hopf bifurcation points H1 and H2 in
the above branch. For example, at s2 ¼ 134.38, the quasiperiodic response is shown through Poincare map,
time history and power spectra in Fig. 25. The transitional behaviour with torus breakdown is depicted in
the form of phase portrait, power spectra and Poincare map in Fig. 26 for another point at s2 ¼ 183.88
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Fig. 22. Phase portrait, time history and Poincare map for s2 ¼ �81.488, m ¼ 0.1, a ¼ 0, u1 ¼ 18 and s1 ¼ 93.4.
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closer to H1. For points closer to the limit point SN2, the system exhibits chaotic behaviour as shown in the
phase portrait, power spectra and Poincare map typically for s2 ¼ 341.72 in Fig. 27. These are some
illustrations of a wide range of behaviour displayed by the system under the combination parametric
resonance and internal resonance.
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Fig. 23. Phase portrait and Poincare map for s2 ¼ �80.419, m ¼ 0.1, a ¼ 0, u1 ¼ 18 and s1 ¼ 93.4.

Fig. 24. Phase portrait, time history and Poincare map for s2 ¼ �90.419, m ¼ 0.1, a ¼ 0, u1 ¼ 18 and s1 ¼ 93.4.
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6. Conclusion

Though in conventional beams with hinged–hinged boundary conditions having classical mode shapes and
stretching-related cubic nonlinearity internal resonance is not possible due to vanishing of the nonlinear
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Fig. 25. Poincare map, time history and power spectra for s2 ¼ 134.38, m ¼ 0.1, a ¼ 0, u1 ¼ 18 and s1 ¼ 93.4.
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interaction coefficients, internal resonance is possible with consequent repercussions on the system behavior in
case of pipes conveying fluid with similar boundary conditions and nonlinearity. As a result of nonlinear
modal interactions involving two modes, responses in these directly and indirectly excited modes exist whereas
those in other modes are damped out.

The nonlinear pipe conveying fluid with harmonic velocity pulsation can exhibit a wide array
of dynamic behavior in presence of 3:1 internal resonance under principal parametric resonance
of second mode and combination parametric resonance due to parametric excitation related to
the flow pulsation. The internal resonance in pipes conveying fluid, which is not explored so far, is
studied.

For the case of principal parametric resonance of second mode, single-mode solution and isolated
two-mode solutions exist besides the trivial state in the frequency response and amplitude response. The
two mode solutions are the contributions of internal resonance in the system. The frequency response
curves corresponding to single-mode solutions exhibit a hardening spring-behavior. In the single
mode response, nontrivial steady-state solutions bifurcate from the trivial solutions through supercritical
and subcritical pitchfork bifurcations for the frequency response and through subcritical pitchfork bifurcation
for the amplitude response. Besides the pitchfork bifurcations, the system undergoes Hopf bifurcations
and saddle node bifurcations for variation of control parameters viz. frequency detuning and amplitude of
pulsation.

Two mode equilibrium solutions exist for specific range of parameter values and are isolated from the single
mode solutions. For higher magnitude of flow pulsation the strength of the nonlinear modal interaction
increases. For lower values of the internal frequency detuning parameter, the strength of the nonlinear
interaction due to the three-to-one internal resonance weakens specifically for the indirectly excited first mode.
For the single mode (second mode) response, the separation of the nontrivial stable and unstable curve
decreases with decrease of the internal frequency detuning parameter.

Corresponding to various bifurcations, the system exhibits dynamic solutions namely periodic and quasiperiodic
responses for typical system parameters which are illustrated with the help of time and power spectra, phase
portraits and Poincare maps. The system exhibits jump phenomena for variation of control parameters.
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Fig. 26. Phase portrait, power spectra and Poincare map for s2 ¼ 183.88, m ¼ 0.1, a ¼ 0, u1 ¼ 18 and s1 ¼ 93.4.
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For the combination parametric resonance case, isolated two mode solutions coexist with the trivial state.
There is no single mode solution. The first mode response shows monotonic increase with the increase of
detuning parameter, while the second mode response decreases continuously. The system exhibits saddle node
and Hopf bifurcations, jump phenomena, beating effect, periodic, quasiperiodic and chaotic responses for the
chosen values of the control parameters. The route to chaos for the chosen parameters is through
quasiperiodicity in the form of torus breakdown.

The trivial and nontrivial solutions of the pipe are analyzed through the direct perturbation MMS technique
and a continuation algorithm. It has been demonstrated that these methods can be used for the nonlinear
dynamic analysis of pipes with pulsatile flow and with internal resonance. Pipes conveying fluid being part of
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Fig. 27. Phase portrait, time history and Poincare map for s2 ¼ 341.72, m ¼ 0.1, a ¼ 0, u1 ¼ 18 and s1 ¼ 93.4.
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a broader family of traveling continua, such analysis involving internal and parametric resonances can be
applied to other applications like traveling beams and strings.
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